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Nonlinear oscillations in a collisionless plasma, which are described /515%

by the equations:

NASA TTF-10, 015

THEORY OF NONLINEAR OSCILLATIONS IN A
COLLISIONLESS PLASMA

L. M. Al'tshul', V. I. Karpman

ABSTRACT | %'J( 5g

A general perturbation theory for nonlinear oscillations
in a collisionless plasma is developed which is not restricted
by any assumptions regarding the randomness of the phases.
Summation of the secular terms of the perturbation theory
leads to equations for "slow" processes. In the case of suffi~
ciently broad wave packets, these equations change into the
familiar equations of the quasilinear theory for a weakly
turbulent plasma. The converse limiting case —- the develop-

ment of a periodic wave in the quasilinear approximation —-

is investigated in detail. (}uijE@xﬁLf/
1. INTRODUCTION

(1

*

(1)

Note:

For purposes of simplicity, we shall investigate potential oscillations

Numbers in the margin indicate pagination in the original
foreign text.

without a magnetic field, although all the results can be extended to
the general case without any great difficulty.
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(j - index indicating the type of particles), have been investigated in sev-
eral studies [see the abstract (Ref. 1, 2), where a detailed bibliography is
presented and also more recent articles (Ref. 3-10)]. One distinguishing

feature of the methods developed in these studies is the utilization of the

so-called approximation of "

random phases", so that their results are only
applicable to a turbulent plasma,where the width of the wave packet is quite
large. 1In several cases (for example, in a finite plasma) the problem

arises of studying the dynamics of nonlinear periodic waves which are charac-—
terized by the discrete selection of wave numbers k. Naturally, in this

case the approximation of random phases is not applicable.

This article examines the general perturbation theory for plasma oscilla-
tions, which is not limited to assumptions regarding the random nature of the
phases. A formal expansion is carried out in powers of the oscillation field;
then the orders of secular terms are isolated and ' summed in general per-
turbation theory series, similarly to the work of Van Hove (Ref. 11), Prigo-
gine (Ref. 12), and Balescu (Ref. 13) in obtaining kinetic equations for
slightly nonideal systems. Summation of the "main" orders of secular terms
leads to quasilinear equations which describe the reverse effect of the
oscillations on the distribution function of plasma particles. The applica-
bility of these equations, however, is not confined to conditioms regarding

the wave packet width. If this width is large enough, these equations change



l into the well-known equations of the quasilinear theory for a slightly

| turbulent plasma (Ref. 14, 15). In the opposite, limiting case, equa- /516
tions are obtained for a '"monochromatic" wave. The solution of these
equations, which is given in this article, describes the development of
the plasma distribution function and the field of the '"monochromatic"
wave, with allowance for the reverse effect of the wave and the distribu-

tion function.
2. PERTURBATION THEORY. SUMMATION OF THE TERMS

Following the work of Landau (Ref. 16), we shall look for a solution

for equations (1.1) and (1.2) with the initial condition(z)
FO,5,v) = DFL) e = (1) + T ax(v)e™ G.1)

(For purposes of brevity, the index indicating the type of particles is
omitted from this point on.) Expanding F(t,r,v) and E(t,r) in Fourier series:

F(t,1,v) = TFe(t, v)ew, Bt 1) = D B () e (2.2)
(3,

| and applying the Laplace transformation to terms dependent on time

(%)
(3)

The normalized volume is assumed to equal unity.

The corresponding terms in the Laplace representation are analytic in
the upper halfplane w, except possibly in a certain vicinity of the
actual axis. The inverse transformations have the form
oo+ 10 ’
E, ()= —— S E, (0)e—ivt dw, 6 >0
k() 5 k(®)

— o041

It is also advantageous to keep in mind the relationship of the con-

volution:
= ' 1 , , , 1 do’do” Py (0 Fa (0
S Fl(t)FZ(t)e'M dl=~é;8d0)1"1((0 )Fz((l)—()))= (2ﬂ)ziS o +o0 —o 1(0) (0 )’-

) ‘
where integration is carried out along lines lying in the upper half-
plane, satisfying the condition Im w > Im w' + Im w'.

* This will be designated by K.
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Fy(o,v)= SFk(t,v)ei"" dt, Ex(w)= SEk(t)eim' dt, | (2.3)
0

0

We obtain the following integral equation instead of (1.1):

4

1 [ O d(l), 0Fku((o — ,v) iFko(v)
= L E N
o —kvim 2 S 2 (o) av +m—kv’

Fy(o,v)= (2.4)

k=K'+k”
where FKO (v) is determined by the initial conditions (2.1). In obtaining
(2.4), we employed the relationship of convolution [see footnote(3)].

Let us expand the solution of equation (2.4) in power series of the

field E:

©o

Fx(0,v) = X F™(a,v),"

o (2.5)
where FK(n) (w,v) ~ EB, Ex v gr(v). We employ f(v) for the zero approxima-
tion [see (2.1)]. The first approximation is given by the relatiomship /517

(k# 0)
e Eg (o) ﬁ igx(v)
imow—kvdv  ©o—kv’

F 9 (0,v) = (2.6)

The following recurrence formula for FK(n) (w,v) in the case of n > 2 follows

from (2.4):
1 e ¢ do’ Fg " (@ — 0, V)
F (n) ’ 3 —_— .....~..E , 4 o
K™ (@, V) ©w— kvk=§+k,,im 2% - (@) av { 2.7)

By means of (2.7), (2.6), we obtain the expression for the general term

of series (2.5):

, n -
Fk(")(m,v)=( - 2 {S dmldwz...dmni(i‘—)x
2mim k=K. 4k, ©— kv
d Ey,(02) d Ex, (on) 0
Vo—kv—ao+ kv av' " i v
. ﬁ)—kV—Z((ni—kiV)
i=1
5 E (2.8)
% A\ — 22 (dodo, . . . do Ei (@)

n o— kv
o —kv — ) (0; — kiv) :

i=1
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m—kv—zl} (@; — kgv) (2.8)
1=
, y 9 g, (¥) : (cont.)
N = :

' 0 —kv— X (0 — ki)
) i

=1

It is possible to provide a simple, graphic representation of the general
term, by introducing itsdiagrammatic representation (Figure 1). EKS (wg)
correspond to the solid vertical lines in Figure 1. The horizontal lines

designate the "lines of propagation"

[(o—kv——z (@; — k;v) :l~l 0<s<n)

i=1

The integrodifferential operator corresponds to the s—apex

e 4@ S d;x :

The circle at the right term in Figure 1 expresses the function f(v), and

im ov

the vertical dashed line at the second term - the function igg(v). The
order of the diagram is determined by the number of vertical lines (including
the dashed line). It can be seen from Figure 1 that the term of each order
of the perturbation theory in the distribution function consists of two
individual parts: The parts depending on f(v) (with the circle at the right
end of Figure 1), and the parts dependent on gg(v) (with one dashed line at

the right end of the diagram). /518

Let us now examine equation (1.2) for the wave field. Taking into ac-

count (2.2), (2.3), (2.5), we can rewrite (1.2) in the following form

kEy (0) = —4nieN > S Fy™(o,v)dv (2.9)

n={ .

(in order to abbreviate the formulas, we shall omit summation symbols cor-

responding to types of particles from this point on; reduction of the
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Figure 1

corresponding summation in the final formulas entails no difficulties).
Substituting FK(I)(w,v) from (2.6) in the first approximation term in the
right part of (2.9) and combining the terms which are linear in E, we can

rewrite (2.9) in the following form

4rielN v)dv 4me1V
ex (0) Ex (@) = — kSg(‘o‘(_)kv kZS Frd™ (0, v)dv, (2.10)
n==2 }

where eg(w) is the dielectric comstant of the plasma:

av df 4nezN |

1 2 2.11
ek(m) + S (o—kvkdv ©o m (2.11)

The second term in the right part of (2.10) describes nonlinear effects.

If we disregard it, the well-known equation for the operation field in the

linear approximation obtained by Landau (Ref. 16) is obtained

rx(o) .., do —doy t
— —i0 ~ E,° k 4
Bu(t) = § oy o g = B (2.12)

4neN gx(v)dv rg(ok) dek(m |

== k [ E = ’ ! : y'
(0)= % S o — kv K e (o) Ok (ox) =—55" bomo, (2.13)
(1)02 df

_ed dff (2.14)
Sklkz dri 'L=w"'k/k

Oy = Q‘ko —L— i‘(”k,- Ye=1x

where EKO is the oscillation amplitude which, as was indicated above, has the

same order of magnitude as the initial perturbation gg(v), and wy is the
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complex oscillation frequency which is the root of the dispersion equation
eg(w) = 0 with the largest imaginary part. Terms corresponding to /519
other roots of the dispersion equation are omitted in the right part of
(2.2); these terms are exponentially small for t + «». We shall assume that
the condition

vi/ox <<, (2.15)
is fulfilled, without which the results presented below are inapplicable.

In the formal expansion of (2.5), not all of the nonlinear terms are
actually small (in the sense that they can become large for rather large t
after conversion to the t-representation). In order to obtain the correct
asymptotic behavior for large t, such terms must be isolated and summed.
Instead of the exact field components EKS(wS) which satisfy equation (2.10),
let us first substitute their values in the linear approximation (2.12) in
the expression for the general term (2.8), in order to clarify the "large"
terms. Let us disregard the imaginary parts of the frequencies wKS. In
the Laplace representation, the corresponding expressions will have the
following form:

iER,
o, — o} ’ (2.16)

8

Eka ((1),) =

where E§ is the oscillation amplitude in the linear approximation deter-
s
mined by equation (2.13). Due to the simple form of By (wg) in (2.16), we
s

can readily carry out integration over all wg in the general term (2.8),

TP TP RN N R



as a result of which the quantities w_ are replaced by mko, and By (wg) is
s s

s
replaced by EKO.
s

We should now note that among the different diagrams in the sum with
respect to kg in Figure 1, there will be diagrams in which the series of
lines corresponds to the conjugate field components (Kg = “Kg41 ng =-w§s+l).
We shall call these lines coupled lines. The coupled lines in the diagrams
are closed in the form of loops (see Figure 2). The propagators on both
sides of the loop are the same, which leads to the appearance of multiple
poles with respect to w in FK(n)(uhvﬁ. In the t-representation, the
corresponding terms will be secular, i.e., they will be proportional to

tr

, where r+l is the multiplicity of the pole in the Laplace representa-
tion.

By way of a typical example, let us examine the term expressed by the
diagram of the second order in Figure 2,b., After substituting the approxi-

mation (2.16) for the field Ey (ws) and performing integration over wg,
s

we obtain for it
|

e Vo E @ E 3 F(v)
- kL S - —— 2.17
(lm) 2 ® OV 0—+qvov o ( )

This expression, which is one of the contributions to the Fourier component
of the distribution function with k = 0, has a second-order pole for w = O0;
correspondingly, it provides a secular term which is proportional to t in
the t-representation. Similarly, for the term expressed by the third-order
diagram in Figure 2,a (which makes a contribution to the k-component /520

of the Fourier distribution function) we obtain

ey B8 B¢ 9 By 0 fW)
Qm)%m—&v0vm—m£0vm~mﬁ—%tﬂw6vm—mw' (2.18)

Expression (2.18) has a second-order pole for w = wKO (in the t-representation,



it is proportional to t exp (-iwglt).

It was assumed above that (2.16) was substituted, instead of EK(w).
If we substitute exact EK(w) or (2.16), but with the complex frequency
wg = wKO + iYK’ then secular terms will not appear after conversion to
the t-representation. However, if fEK(t)| slowly depends on time, then
terms containing coupled Eyx will not be secular, but will be large for a
sufficiently large t (“).

Thus, for sufficiently large times the nonlinear terms in the equation
for the field (2.9) will not only lead to small corrections to the solution
of the corresponding linearized equation, but can also completely change
the solution. In order to obtain the correct asymptotic behavior of the
field for large t, the "large'" terms indicated above must be summed. Gen-
erally speaking, the term of the nth order (2.9) contains secular components
which have a degree of secularness (i.e., the power of t which is contained
in this component after conversion to the t-representation). Terms having
the maximum degree of secularness for a given order n will be called main
terms. We shall confine ourselves in this article to summing only the
main secular terms [terms having a small degree of secularness were investi-
gated in (Ref. 18)]. It can be shown (Ref. 18) that the main secular terms

in the right part of equation (2.9) are expressed by the diagrams drawn in

() If we substitute (2.16) with complex wy, instead of Eg(w), then - as

can be readily corroborated - we will have (wI%/yK)r >> 1 instead of

the secular factor t¥, so that the corresponding terms must be assumed
to be large, as was done previously. The main difference between the

results of our study and the results obtained by Montgomery (Ref. 17)

lies in the fact that the indicated large terms are not summed in the

perturbation theory developed in (Ref. 17).



ey g

Figure 2,a. Let us designate the sum of the diagrams in Figure 2,a by

¢ (w,v). It can be readily shown that this quantity is simply expressed
by the function ¢(w,v) which represents the sum of all the diagrams shown
in Figure 2,b, namely,

(2.19)

e ¢ do Ex(0") 00 (0o—o’ v)
D =
k(@) imS 21 o — kv ov

With allowance for only the main secular terms, equation (2.9) assumes

only the following form

'KEx (0) = 4neN E—lf_(—!li——dv—lmieNS Ok (o, V)dv =
gx(v) do’ ¢ dvEx(0') 0D (0 — o', v) (2.20)
= 4neN § dv — oo |
o — kv 2n o— kv v
Thus we obtain the main equation for the field in the form
 pa 2(v)
S o ex(®, m)Ek(m)——4neN E _kvdv, (2.21)
1 we? dv 0D (0 —o',v) | (2.22)
ek(m’m)—m—m’+ k2 S (;o—kvk av - ’

Equation (2.21) differs from the linear equation for the field in the /521
fact that, instead of the dielectric coefficient egx(w), it contains the
integral operator with the series eK(w,w') which is expressed by the function
®(w,v). If we replace ¢(w,v) by the zero approximation of the distribution
function (the first component in Figure 2,b) - i.e., if we set ¢(w,v) =
if(v)/w - then (2.21) changes into the linear equation for the field.

In order to obtain the total system of equations describing the develop-
ment of the oscillations, we must obtain the equation for the function
$(w,v). This quantity represents a distribution function averaged over spa-
tial pulsations. From this point on, we shall call it the distribution
function of the background. It follows from the form of the diagrams in

Figure 2,b that ®(w,v) satisfies the equation

10



: —io® (o, v) =/ (v) +
ie? n o Eq(0) D(w—o0—0",v) do do” (2.23)
m ?SE—q(m)W“’.—‘IV—@' ov 2n 2a "

+

which is an analog of the Dyson equation in the quantum field theory.
We shall call equations (2.21) and (2.23) generalized quasilinearized
(5)

equations. Under certain additional assumptions, they change to the

well-known equations of the quasilinear theory for a weakly turbulent
plasma (Ref. 14, 15). As will be seen later on, the conditions under
which this occurs stipulate that the width of the plasma oscillation spec-
trum must be large enough. In another limiting case, when the spectrum is
very narrow - for example, when "a monochromatic" (more accurately, a
periodic) wave is excited in a plasma - equation (2.23) has completely
different properties and solutions, while retaining the same meaning as
for a weakly turbulent plasma (with allowance for the reverse effect of
the wave on the distribution function).

Let us now examine in greater detail the manner in which equation
(2.23) changes into a quasilinear equation for a weakly turbulent plasma.
Let us first substitute Eq(w) in the right part in the form of (2.16)
(this means that we have disregarded the dependence of the field amplitude
|Eq(t)| = qu on time), and let us perform integration over w' and w". As

a result, we obtain

(5)

We must point out that in summing the diagrams leading to equations
(2.21) and (2.23), we did not employ approximation (2.16) for the
field. We only needed the latter in order to clarify "large" terms.

11
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. e |EQr 6 1 0D (0, v)
_uo(D(oo,v)=}‘(v)—}—t(7;;)Zlq‘;I qu-f—mq—qvq ((;3 ). (2.24)
q

The region of the w values, where ¢(w,v) is large, is related to the charac-
teristic time 1 required by the function #(t,v) to change by the relation-
ship |w|~T'1. Let us assume that the following condition is fulfilled

T_1<IW, (2.25)
where averaging is carried out over q. We can then disregard w in the de-
nominator of the right part of (2.24). However, we must set w = i0 because
w lies in the upper halfplane. After this, we can immediately change to

the t-representation in equation (2.24), and we obtain the quasilinear

equation for a weakly turbulent plasma:

a(l)(t;_v)-'_'.'igdq 5 1 a0 v)

89 gop
ot 'mi )¢ IE°] q‘av 0g® — qv + i0 1%
e "

m3

d ] : oD(t, v (2.26)
18P a g 0o —av) g 250

Let us clarify the meaning of the condition (2.25). Since the right
part of (2.25) will be minimal when v lies in the resonance region of /522
velocities, we can set v ~ wq/q. For purposes of simplicity, examining
the case of Langmuir operations for which Wq ~ Wo» and assuming that

v = wo/qp, where qp is the mean wave number, instead of (2.25) we obtain

1< wdg/ qo (2.27)

(Aq is the width of the wave packet). The quantity T represents the charac-
teristic relaxation time of the distribution function in the resonance
region of velocities, and is determined by the condition

t~D/ (Av)?, D~elg’q?/ m?*Aquv, Av = A(wq/gq)~wAq/ ¢, (2.29)
where D is the quasilinear diffusion coefficient in velocity space, and

¢ is the mean electric field potential of the wave:

12
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|92 = {19a P da~ | g, Ag.
Substituting (2.28) in (2.27), we find that the condition under which

equation (2.24) changes into a quasilinear equation has the form

Av = A(wq/ @) > (ep/m)™, (2.29)

which coincides with the applicability condition of the quasilinear equa-
tion obtained by Vedenov (Ref. 14) from other considerations.

The physical meaning of (2.29) is that the scatter width of the wave
phase velocities considerably exceedsthe particle oscillation velocity in
the potential well of the wave field with the amplitude ¢. On the other
hand, (2.29) can be regarded as the plasma turbulence criterion. Equa-
tion (2.26) does not contain terms which describe the "adiabatic'" change
of the distribution functions in the nonresonance region. In order to
obtain these terms, let us turn to the integral in the right part of
(2.23), and let us determine the effects of a weak change in the field
amplitude. Since Eq(w) becomes particularly large for w = wqo, the re-
gions where w'" -~ wqo, w' ~ qu = -wqo make the main contribution to the

integral in (2.23). Therefore, let us represent the denominator of the

integrand in the form w-w'-wg’+w.’-qv, and let us expand (w-qv-w') in power
q q ]

q

series of w-w'-w limiting ourselves to the two expansion terms:
q g

1 1 0 — 0 — 0" (2.30)

~

0o—qv—a T o —qv+i0 _‘(ooq"—qv.—{-i())“l )

Substituting this expression in (2.23) and employing the convolution
relationship [see footnote (3)], we obtain the following in the t-represen-

tation

13




oD (¢, v)=n( e )"‘S dq

f 3]
ot ™ e |Eq(t)|"qm—é(mq"—qv)q—a;@(t, v) +

(5 0 5O 0 G0 m iy 5D
Xq%—-g—taw(t,f)]} , = |

where the principal value of the second integral is chosen. We can apparently
disregard the term with 3¢/3t in the right part. After this, (2.31) will
fully coincide with the quasilinear equation which allows for adiabatic
change of the distribution function in the non-resonance region. The /523
applicability conditions of this equation are determined, just as previously,
by relationship (2.23).

In a similar way, we can show [for greater details, see (Ref. 19),
pages 14, 15] that the equation for the field (2.21) changes into the equa-
tion of the quasilinear theory for a weakly turbulent plasma when condition

(2.29) is fulfilled:

) __ (i, + ya(0) 1 Ex(®),

dt (2.32)

w2 00 (¢, v) )

)=n——————~
vx(t)=mn ellE  ov oo (2.33)
k

where wKo is the real part of the frequency in the linear approximation.
3. QUASILINEAR THEORY OF A '"MONOCHROMATIC' WAVE

In this section, we shall examine in detail the use of generalized
quasilinear equations (2.21) and (2.23) in studying the development Vof a
nonlinear "monochromatic" wave. The sum in (2.23) now pertains to the dis-
crete selection of the wave vectors q = nK, n = *1,2,.... where 2n/k is the
wavelength., The amplitudes of the multiple harmonics will be of a higher

order of smallness, as compared with the amplitude of the first harmonics,

14




so that they can be disregarded. Also disregarding the dependence of the
wave amplitude on time(s) in equation (2.23), we arrive at equation (2.24),
in which the sum consists of two components corresponding to q = *K. Intro-

ducing the following notation which is more suitable for this case,

a2 = 2'hkeE)0 / m, u=v—owr/k, z=ku/a. (3.1)
(o is on the order of the isolation frequency of particles trapped by the
potential well of the wave; correspondingly, o/k is on the order of the
trapped particle velocity), we obtain the principal equation in the fol-

lowing form s
7} 1
dr @ — azngzq}(w’ z). (3.2)

In order to solve this equation, let us introduce the function

D (o, 95)——f($)—0lz

a2

Y (o, z) = (D((o z). (3.3)

— a2x? 0z

Differentiating both parts of equation (3.2) with respect to x and substi-

tuting (3.3), we obtain

02 ‘F(w,x)+<—2—x2)‘P(m x)——g—f—. (3.4)

ox ®dr

The solution of equation (3.4) can be represented in the form of an expan-

sion with respect to normalized parabolic cylinder functions Y,(x):

¥n (2) = (2"n] w'7) = e=22 H , (z), (S Pa(z) dz =

—00

where Hn(x) are Hermite polynomials. The y,(x) functions satisfy the equa-

tion

dzlbn(x) +(2n+1'—332)\|7n(x)—0 (3.5)

"~~~
wui
N
o~

Assuming that

|

(6)

As will be shown below, this is valid when condition (3.28) is ful-
filled.

15




d o0
Ez{= S‘ﬁn‘pn(‘t), Bn—S\Pn(x)—dx (3.6)

n==0

from (3.3) and (3.4) we obtain

00 (v, z) —i ? — o2z? Z Bapn (x)

oz » - mz—(2n+1)a2=
' (3.7)
i df . ia® 2n+1—a2a2
=@t a2 o — (D) P (@)
Changing to the t-representation, we obtain
oD (t,x d 2n 41—
_—__(gx ) =7i£: > + ﬁnwn(z)[i—cosat‘ﬁn—l—i] (3.8)

- 2nt1
In order to calculate the distribution function ®(t,x), let us replace

(x2—2n—l)lpn(x) in (3.8) by dzwn(x)/dxz, after which elementary integration

is performed. Returning to the variable u, according to (3.1) we obtain

k
D¢, u)=f(u)+- y25;1;¢(lq(b-mmﬂﬂn+1 (3.9)

It can be seen from (3.9) that ®(t,u) differs very little from its initial
value f(u) for t << g~1 ~ (keEo/m)‘llz, where Ey is the wave amplitude. 1In
the case of t > a~!, the second term in (3.9) oscillates with a change in t,

and it rapidly decreases in the case of
u=v—on/k>a/k~ (eEy/ km)',

i.e., the quasilinear distribution function is deformed only close to the
resonance velocity v = wy/k in the velocity interval on the order of the
oscillation velocity of particles "trapped" by a wave. The oscillation
frequency of the distribution function close to phase velocity, as can be
seen from (3.9), is on the order of o, which coincides with the particle
oscillation frequency in the potential well of a wave.

Now substituting (3.7) in (2.22) for ak(w,w'), we obtain
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n__ i wo? dv df ‘
e (0, ) = m-—(o’[1+ szm—kvkE_i_ (
2 Bn @r+ 1) — Kz [ ku 3.10)
42 2 Sdu P )]
)a?

e 4 (0—0')2—(2n+1 0o—or—ku "\ a

Utilizing (3.10) and (2.21) and performing elementary transformations, we

obtain

4neN S g (v)
kep(w) Y o —kv 2naeh m)

(2n 4+ 1) a2 — k2u? do’Ey (')
XSd\bn( ) Co—op—ku S(m—m')[(m—w)z—(2n+1)a2]

Ek(m),=

Zﬁn

'i (3.11)

where € (w) is determined by formula (2.11). Multiplying both parts of
(3.11) by i(w-wy) [wk - the oscillation frequency in the linear approxima-
tion, see (2.14)] and changing to the t-representation, we obtain

I (1.“’Z 2n+1Sdu¢n(ku)x

. ¢ | (3.12)
X [(2n + 1) a2 — k2| dt’ (1 — cos at'Y2n + 1) X
0

X Ex(t')expli(ku + wr) (¢ — 1)1,
In obtaining (3.12), we have disregarded all of the properties of the

right part of (3.11), which are located below the point wyg, since they /525
make an exponentially small contribution in the case of rather large t. 1In
addition, we have omitted the term fdvgk(v)e—ikvt, which rapidly decreases
with an increase in t, due to the factor e_ikVt which oscillates for large t.
The characteristic time of this decrease is (kvg)~!, where Vg is the effec-
tive "width" of the function g, (v). We have assumed that this time is

small as compared with other characteristic times which determine the change

in the field amplitude. Utilizing (3.5) and the following relationship

[see (Ref. 20)]
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o . (3.13)
{ wn(g)endy = @myinpa(s),

-—00

We can perform integration with respect to u in the second term of the right

part of (3.12). As a result, we obtain

dEn(t) _
dt

)t
— ionBy(t)— (2n) h "’°°‘ EBn §ar (v =12 x
0

2n+1 (3.14)

X Yala(t — t)] (1 — cos at’Vm)Eh(t’) exp [ion(t' —t)]. (3.14)
The integrand in (3.14) contains the product of the following expres-
sion, which changes rapidly with a change in t',
wn[a(V-—t)](i——cosaﬂV§Ei¥TIf
fthe characteristic time for the change is T& o~!) by the quantity
Ep(t') exp (iwgt'), which equals the slowly-changing field amplitude

1

Eko(t'). Disregarding the change Eko(t') during the time o™, we can take

Eko(t') out from under the integral sign. Performing simple transforma-

tions after this, we obtain

dEx(t)

> = [—iox + 0: ()] Ew(?), (3.15)

B (1) = — (2 )"’

Z (—1)" Sdr{mn [2n (1) — W2n (0) cos T Y4n + 1] —
- - (3.16)
— iBanta [Panss (T) — (4n 4 3) " 1Pzn+1 (0)sin x Y4n + 3]}, \

Integrating the equatlon we will have

E) (t) = Ex(0)exp {- it [mho + iva + zt—‘S dt'0x (1) ]} (3.17)
(t
It can be seen from (3.17) that rd}uysdyeh(y)‘ represents a change /526
0

t 1

in the increment, and t“hnS dt’8x (¢') represents the real part of the
e

frequency caused by a distortion of the distribution function due to the

reverse effect of a wave. After studying (3.16), one can readily state
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that it converges fairly rapidly, so that the order of magnitude of 6 (t)
does not exceed the order of the first term in the series. Calculating
the quantity B, from (3.6) under the assumption that f(v) is the Maxwell

distribution, we readily find that

. |
}

t1 § 0 () dt' Sy, (3.18)
(1]

where yy is the linear theory increment. Since vy << wko, the nonlinear
correction to the real part of the frequency can be disregarded. On the
other hand, the correction to the linear increment is very considerable.

Therefore, let us examine the following quantity in greater detail
t

Th(t)=Yk+t"ReS 0, () dt’, (3.19)

0

which represents an increment which is dependent on time.

Let us first study T (t) for small t(at << 1). We shall make use of
the fact that, for rather small arguments and large orders, the functions
of a parabolic cylinder have the following asymptotic representation
(Ref. 20):

P2n (2) = Y2n (0) {cos 2V4n + 1 4 O[2":(4n + 1)~']}. (3.20)

Taking (3.20) into account, we find that

t  ar |
0= dt’ § dv[en (1) = b2n (0) cosT VAR F 1] < 2 (0) (a) (4 + 1)~ (3.971)
0 0 ‘
and it can thus be seen that for at << 1 the difference between %k(t) and
the linear increment is a small quantity on the order of (at)7/2. We
should note that for at ~ 1 the left part of (3.21) decreases rapidly with
an increase in n, due to which fact we can confine ourselves to a few of

the first terms in the series in expression (3.19) for Pk(t) in the case

of t ~ o~!. Since these terms are on the order of the linear increment
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Yrs T (E) differs significantly from Yy in the case of
t ~ ot ~ (keEy/ m)'™,
Let us now study I‘k(t) for t > o-!. Let us rewrite formula (3.19) in

the following form

: of ¢ :
= yn — (2n) " ’ —1)7B2n { dvpen (v)—
T (£) = y — (2m) "ot Aeh,kagdt { ?_( 1) B2 OS _ (1:)_.
, . |
— l§n_‘, (—1) nanagldnpzn (%) }+ (2m) "t g,::)I:az X | (3.22)
=D
X ‘n_, g P2r (0) (1 cosgt}’4n+1).i /527

Utilizing (3.13) and (3.6), we can rewrite the first term in the braces in

the following way:

% (— 1)"Pan So‘pzn (v)dv = (%‘)lh'z Panp2n (0) =

=(n).,, k df (3.23)

2/ adv

v=0,/k *

The substitution of (3.23) in (3.22) leads to exact compensation for the

first term Yk in (3.22). We can represent the second sum in the braces

(3.22) in the following form

Z (— 1)"Pan S dtyza (tv) = (2n)—'" ZBZn S dTS dayon (z) eit* =
" at! at’  —oo

(3.24)

= a(2n)~" det”_S:du %Lcos. (kut”).
This expression vanishes for t + « (taking the fact into account that
u = v-wp/k, and £(v) v exp(—vz/vq_\z), and it can be readily seen that the
term (3.24) rapidly begins to decrease for t > (kvp)~!. Thus, for rather

large t, the quantity I‘k(t) assumes the following form
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2 2 Yaeyn2 — 1 n n . -
Iu(t) = ih—f‘,;;:—o 2(4n—_)*_[;2—\p2n(0) sin? atyn + 1/,. (3.25)

Thus, the nonlinear increment [} (t), for times which are small are
compared with the particle oscillation period in the potential well of the

wave (ot << 1), is close to the linear increment Yi+ For large t, the

quantity Iy (t), oscillating, attenuates as t-1, However, the wave ampli-

tude, determined by the expression
Ex®(t) = Ex°(0) exp [tTx ()], (3.26)

does not strive to a stationary value in the case of t + «, since oscilla-

tions of the quantity th(t) are not attenuated. In order of magnitude,

1

the characteristic period of these oscillations is a~* - the particle

oscillation period in the potential well of a wave. The oscillation ampli

tude of the quantity tI)(t) is on the order of

tTw(t) = (i:ic;:m Z( 1)”—%‘%?—)~%5- (3.27)
It was constantly assumed above that the field amplitude changes very
little during the time of the wave nonlinear development. It follows from
(3.26) and (3.27) that this holds under the condition that
w/la<<i. (3.28)
Under this condition, the exponent in (3.26) can be expanded in series, /528

and the average wave amplitude is

2 n 2n
ED(?) ~ E(0) [1+ (2“: "o’ S (412*_‘; 1[)2,,(0)].;

In conclusion, the authors would like to thank R. Z. Sagdeyev for his

(3.29)

stimulating discussions, as well as A. A, Vedenov, B. B. Kadomtsev, and

L. P. Pitayevskiy for their valuable discussion of the results.
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